# 2014年普通高等学校招生全国统一考试(山东卷) 理科数学

本试卷分第 I 卷和第 II 卷两部分,共 4 页。满分 150 分,考试用时 120 分钟。考试结束后,将本试卷和答题卡一并交回。

#### 注意事项:

- 1. 答题前,考生务必用 0.5 毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
- 2. 第 I 卷每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑;如果改动,用橡皮擦干净后,再选涂其他答案标号、答案写在试卷上无效。
- 3. 第 II 卷必须用 0.5 毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
- 4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。 参考公式:

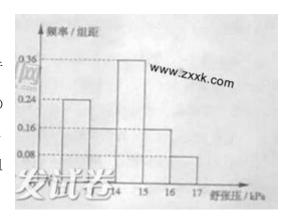
如果事件 A, B 互斥, 那么 P(A+B) = P(A) + P(B)

- 一、选择题:本大题共 10 小题,每小题 5 分.在每小题给出的四个选项中,只有一项是符合题目要求的.
- (1) 已知  $a,b \in R$  , i 是虚数单位,若 a-i 与 2+bi 互为共轭复数,则  $(a+bi)^2$  =
- (A) 5-4i (B) 5+4i (C) 3-4i (D) 3+4i
- (2) 设集合  $A = \{x \mid |x-1| < 2\}$ ,  $B = \{y \mid y = 2^x, x \in [0,2]\}$ , 则  $A \cap B = \{y \mid y = 2^x, x \in [0,2]\}$
- (A) [0,2] (B) (1,3) (C) [1,3) (D) (1,4)
- (3) 函数  $f(x) = \frac{1}{\sqrt{(\log_2 x)^2 1}}$  的定义域为
- $(\mathsf{A}) \ \ (0,\frac{1}{2}) \ \ (\mathsf{B}) \ \ (2,+\infty) \ \ (\mathsf{C}) \ \ (0,\frac{1}{2}) \bigcup (2,+\infty) \ \ (\mathsf{D}) \ \ (0,\frac{1}{2}] \bigcup [2,+\infty)$
- (4) 用反证法证明命题: "已知 a,b 为实数,则方程  $x^2 + ax + b = 0$  至少有一个实根"时,要做的假设是

- (A) 方程  $x^2 + ax + b = 0$  没有实根 (B) 方程  $x^2 + ax + b = 0$  至多有一个实根学科网
- (C) 方程 $x^2 + ax + b = 0$ 至多有两个实根(D)方程 $x^2 + ax + b = 0$ 恰好有两个实根
- (5) 已知实数 x, v 满足  $a^x < a^y$  (0 < a < 1),则下列关系式恒成立的是

(A) 
$$\frac{1}{x^2+1} > \frac{1}{y^2+1}$$
 (B)  $\ln(x^2+1) > \ln(y^2+1)$ 

- (C)  $\sin x > \sin y$  (D)  $x^2 > y^2$
- (6) 直线 y = 4x 与曲线  $y = x^3$  在第一象限内围成的封闭图形的面积为
- (A)  $2\sqrt{2}$  (B)  $4\sqrt{2}$  (C) 2 (D) 4
- (7)为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位: *kPa*)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组第二组,.....,第五组,右图是根据试验数据制成的



频率分布直方图.已知第一组与第二组共有 20 人,第三组中没有疗效的有 6 人,则第三组中有疗效的人数为

- (A) 1 (B) 8 (C) 12 (D) 18
- (8) 已知函数 f(x) = |x-2| + 1, g(x) = kx ,若 f(x) = g(x) 有两个不相等的实根,则实数 k 的取值范围是
- (A)  $(0,\frac{1}{2})$  (B)  $(\frac{1}{2},1)$  (C) (1,2) (D)  $(2,+\infty)$
- (9) 已知 x, y 满足约束条件  $\begin{cases} x-y-1 \le 0, \\ 2x-y-3 \ge 0, \end{cases}$  当目标函数 z = ax + by (a > 0, b > 0) 在该约束

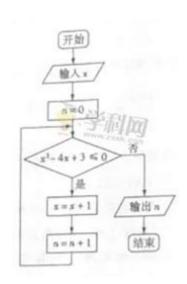
条件下取到最小值  $2\sqrt{5}$  时,  $a^2 + b^2$  的最小值为

- (A) 5 (B) 4 (C)  $\sqrt{5}$  (D) 2
- (10) 已知 a > b,椭圆  $C_1$  的方程为  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ ,双曲线  $C_2$  的方程为  $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ ,  $C_1$  与

 $C_2$ 的离心率之积为 $\frac{\sqrt{3}}{2}$ ,则 $C_2$ 的渐近线方程为学科网

(A) 
$$x \pm \sqrt{2}y = 0$$
 (B)  $\sqrt{2}x \pm y = 0$  (C)  $x \pm 2y = 0$  (D)  $2x \pm y = 0$ 

- 二、填空题:本大题共5小题,每小题5分,共25分
- (11) 执行右面的程序框图,若输入的x的值为 1,则输出的n的值为 .



- (12) 在  $\triangle ABC$  中,已知  $\overrightarrow{AB} \cdot \overrightarrow{AC} = \tan A$ ,当  $A = \frac{\pi}{6}$  时,  $\triangle ABC$  的面积为\_\_\_\_\_.
- (13)三棱锥 P-ABC 中,D ,E 分别为 PB ,PC 的中点,记三棱锥 D-ABE 的体积 为  $V_1$  ,P-ABC 的体积为  $V_2$  ,则  $\dfrac{V_1}{V_2}=$  \_\_\_\_\_\_.
- (14) 若 $(ax^2 + \frac{b}{x})^4$ 的展开式中 $x^3$ 项的系数为 20,则 $a^2 + b^2$ 的最小值为\_\_\_\_\_\_.
- 三、解答题:本大题共6小题,共75分.

### (16)(本小题满分12分)

已知向量 $\vec{a} = (m, \cos 2x)$ , $\vec{b} = (\sin 2x, n)$ ,设函数 $f(x) = \vec{a} \cdot \vec{b}$ ,且y = f(x)的图象过点  $(\frac{\pi}{12}, \sqrt{3})$ 和点 $(\frac{2\pi}{3}, -2)$ .

(I) 求*m*,*n*的值;

(II) 将 y = f(x) 的图象向左平移  $\varphi$  (0 <  $\varphi$  <  $\pi$  ) 个单位后得到函数 y = g(x) 的图象.若 y = g(x) 的图象上各最高点到点 (0,3) 的学科网距离的最小值为  $\mathbf{1}$ ,求 y = g(x) 的单调增区间.

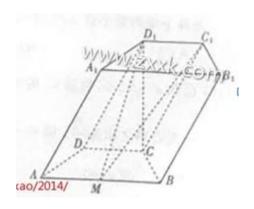
#### (17)(本小题满分 12 分)

如图,在四棱柱  $ABCD - A_1B_1C_1D_1$  中,底面 ABCD 是等腰梯形,  $\angle DAB = 60^\circ$ ,

AB = 2CD = 2, M 是线段 AB 的中点.

(I) 求证:  $C_1M//A_1ADD_1$ ;

(II) 若 $CD_1$ 垂直于平面ABCD且 $CD_1 = \sqrt{3}$ ,求平面 $C_1D_1M$ 和平面ABCD所成的角(锐角)的余弦值.



(18)(本小题满分 12 分)

乒乓球台面被网分成甲、乙两部分,如图,

甲上有两个不相交的区域 A, B, 乙被划分为两个不相交的区域 C, D. 某次测试要求队员接到

落点在甲上的来球后向乙回球.规定:回球一次,落点在C

上记 3 分, 在 D 上记 1 分, 其它情况记 0 分.对落点在 A 上



的来球,小明回球的落点在C上的概率为 $\frac{1}{2}$ ,在D上的概率为 $\frac{1}{3}$ ;对落点在B上的来球,小明回球的落点在C上的概率为 $\frac{1}{5}$ ,在D上的概率为 $\frac{3}{5}$ .假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响.求:

- ( I ) 小明的两次回球的落点中恰有一次的落点在乙上的概率;
- (II) 两次回球结束后,小明得分之和 $\xi$ 的分布列与数学期望.
- (19) (本小题满分 12 分)

已知等差数列 $\{a_n\}$ 的公差为2,前n项和为 $S_n$ ,且 $S_1,S_2,S_4$ 成等比数列.

(I) 求数列 { $a_n$ } 的通项公式;

( II ) 令 
$$b_n = (-1)^{n-1} \frac{4n}{a_n a_{n+1}}$$
 , 求数列  $\{b_n\}$  的前  $n$  项和  $T_n$  .

(20) (本小题满分 13 分)

设函数 
$$f(x) = \frac{e^x}{x^2} - k(\frac{2}{x} + \ln x)$$
 (  $k$  为常数,  $e = 2.71828 \cdots$  是自然对数的底数).

- (I) 当 $k \le 0$ 时,求函数 f(x) 的单调区间;
- (II) 若函数 f(x) 在(0,2) 内存在两个极值点,求k的取值范围.
- (21)(本小题满分 14 分)

已知抛物线  $C: y^2 = 2px(p > 0)$  的焦点为 F , A 为 C 上异于原点的任意一点,过点 A 的直线 l 交 C 于另一点 B ,学科网交 x 轴的正半轴于点 D ,且有 |FA|=|FD| . 当点 A 的横坐标为 B 动, ADF 为正三角形.

- (I) 求C的方程;
- (II) 若直线 $l_1/l_1$ , 且 $l_1$ 和C有且只有一个公共点E,
- (i)证明直线 AE 过定点,并求出定点坐标;
- ( ii ) ΔABE 的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.

## 理科数学试题参考答案

选择题

二、填空题

$$(12)\frac{1}{6}$$

$$(13)\frac{1}{4}$$

$$(13) \frac{1}{4}$$
  $(14) 2$   $(15) (2\sqrt{10}, +\infty)$ 

三、解答题

(16)

解: (I)由题意知 
$$f(x) = a \cdot b = m \sin 2x + n \cos 2x$$
.

因为 
$$y = f(x)$$
 的图象过点 $(\frac{\pi}{12}, \sqrt{3})$ 和 $(\frac{2\pi}{3}, -2)$ ,

所以 
$$\begin{cases} \sqrt{3} = m\sin\frac{\pi}{6} + n\cos\frac{\pi}{6}, \\ -2 = m\sin\frac{4\pi}{3} + n\cos\frac{4\pi}{3}, \end{cases}$$

$$\begin{cases} \sqrt{3} = \frac{1}{2}m + \frac{\sqrt{3}}{2}n, \\ -2 = -\frac{\sqrt{3}}{2}m - \frac{1}{2}n, \end{cases}$$



解得 
$$m = \sqrt{3}$$
 ,  $n = 1$ .

(II)由(I)知 
$$f(x) = \sqrt{3}\sin 2x + \cos 2x = 2\sin(2x + \frac{\pi}{6})$$
.

由题意知 
$$g(x) = f(x+\varphi) = 2\sin(2x+2\varphi+\frac{\pi}{6})$$
.

设y = g(x)的图象上符合题意的最高点为 $(x_0, 2)$ ,

由题意知  $x_0^2 + 1 = 1$ , 所以  $x_0 = 0$ ,

即 到点(0,3)的距离为1的最高点为(0,2).

将其代人 
$$y = g(x)$$
 得  $\sin(2\varphi + \frac{\pi}{6}) = 1$ ,

因为 
$$0 < \varphi < \pi$$
 ,所以  $\varphi = \frac{\pi}{6}$  .

因此 
$$g(x) = 2\sin(2x + \frac{\pi}{2}) = 2\cos 2x$$
.

由  $2k\pi - \pi \leq 2x \leq 2k\pi$ ,  $k \in \mathbb{Z}$  得

$$k\pi - \frac{\pi}{2} \le x \le k\pi, \ k \in \mathbb{Z}$$
,

所以 函数 y = g(x) 的单调递增区间为  $[k\pi - \frac{\pi}{2}, k\pi], k \in \mathbb{Z}$ .

(17)

(I)证明: 因为 四边形 ABCD 是等腰梯形,

 $\mathbb{H}$  AB = 2CD.

所以AB//DC,又由M是AB的中点,

因此 CD//MA且CD=MA.

连接 AD.

在四棱柱 ABCD - A,B,C,D,中,

因为  $CD//C_1D_1$ ,  $CD=C_1D_1$ ,

可得  $C_1D_1//MA$ ,  $C_1D_1=MA$ ,

所以 四边形 AMC, D, 为平行四边形.

因此 C,M // D,A,

又 C<sub>1</sub>M ⊄平面 A<sub>1</sub>ADD<sub>1</sub>, D<sub>1</sub>A ⊂ 平面 A<sub>1</sub>ADD<sub>1</sub>,

所以 C,M // 平面 A,ADD,.

#### (Ⅱ)解法一:

连接 AC, MC,

由(I)知 CD// AM 且 CD = AM,

所以 四边形 AMCD 为平行四边形.

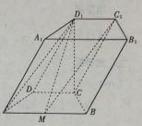
可得 BC = AD = MC.

由题意 ∠ABC = ∠DAB = 60°,

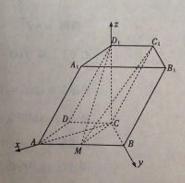
所以 △MBC 为正三角形,

因此 AB=2BC=2,  $CA=\sqrt{3}$ ,

因此 CALCB.







以C为坐标原点、建立如图所示空间直角坐标系C-xyz.

所以  $A(\sqrt{3},0,0)$  , B(0,1,0) ,  $D_1(0,0,\sqrt{3})$  .

因此 
$$M(\frac{\sqrt{3}}{2}, \frac{1}{2}, 0)$$
,

$$\widehat{Bf} \boxtimes \overline{MD_1} = (-\frac{\sqrt{3}}{2}, -\frac{1}{2}, \sqrt{3}), \ \overline{D_1C_1} = \overline{MB} = (-\frac{\sqrt{3}}{2}, \frac{1}{2}, 0).$$

设平面 $C_1D_1M$ 的一个法向量n=(x, y, z),

可得 平面C,D,M的一个法向量 $n=(1,\sqrt{3},1)$ 

又  $\overline{CD_i} = (0,0,\sqrt{3})$  为平面 ABCD 的一个法向量

因此 
$$\cos < \overline{CD_i}, n > = \frac{\overline{CD_i} \cdot n}{|\overline{CD_i}| |n|} = \frac{\sqrt{5}}{5}$$



所以 平面 $C_1D_1M$  和平面ABCD所成的角(锐角)的余弦值为

#### 解法二:

由(I)知平面D,C,M ()平面ABCD = AB, 过C向AB引垂线交AB于N,连接DN. 由 CD, 上平面 ABCD, 可得 D,N L AB, 因此  $\angle D_iNC$  为二面角  $C_i - AB - C$  的平面角. 在Rt $\triangle BNC$ 中, BC=1,  $\angle NBC=60^{\circ}$ ,



可得 
$$CN = \frac{\sqrt{3}}{2}$$
.

所以 
$$ND_1 = \sqrt{CD_1^2 + CN^2} = \frac{\sqrt{15}}{2}$$
.

在Rt
$$\triangle D_iCN$$
中, $\cos \angle D_iNC = \frac{CN}{D_iN} = \frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{15}}{2}} = \frac{\sqrt{5}}{5}$ .

所以 平面 $C_1D_1M$  和平面ABCD所成的角(锐角)的余弦值为  $\frac{\sqrt{5}}{5}$ 

解: (1) 记A, 为事件"小明对落点在A上的来球回球的得分为i分" (i=0,1,3),

$$||P(A_3)| = \frac{1}{2}, P(A_1) = \frac{1}{3}, P(A_0) = 1 - \frac{1}{2} - \frac{1}{3} = \frac{1}{6};$$

记  $B_i$  为事件 "小明对落点在 B 上的来球回球的得分为 i 分" (i=0,1,3) ,

$$||P(B_3) = \frac{1}{5}, P(B_1) = \frac{3}{5}, P(B_0) = 1 - \frac{1}{5} - \frac{3}{5} = \frac{1}{5}.$$

记 D 为事件"小明两次回球的落点中恰有1次的落点在乙上"。

由題意、 $D = A_1B_0 + A_1B_0 + A_0B_1 + A_0B_3$ ,

由事件的独立性和互斥性,

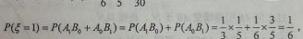
$$\begin{split} P(D) &= P(A_3B_0 + A_1B_0 + A_0B_1 + A_0B_3) \\ &= P(A_3B_0) + P(A_1B_0) + P(A_0B_1) + P(A_0B_3) \\ &= P(A_3)P(B_0) + P(A_1)P(B_0) + P(A_0)P(B_1) + P(A_0)P(B_3) \\ &= \frac{1}{2} \times \frac{1}{5} + \frac{1}{3} \times \frac{1}{5} + \frac{1}{6} \times \frac{3}{5} + \frac{1}{6} \times \frac{1}{5} = \frac{3}{10}, \end{split}$$

所以 小明两次回球的落点中恰有1次的落点在乙上的概率为 3 10

( II ) 由題意,随机变量  $\xi$  可能的取值为 0, 1, 2, 3, 4, 6 .

由事件的独立性和互斥性,得

$$P(\xi = 0) = P(A_0B_0) = \frac{1}{6} \times \frac{1}{5} = \frac{1}{30}$$
,



$$P(\xi = 2) = P(A_1B_1) = \frac{1}{3} \times \frac{3}{5} = \frac{1}{5}$$

$$P(\xi = 3) = P(A_3B_0 + A_0B_3) = P(A_3B_0) + P(A_0B_3) = \frac{1}{2} \times \frac{1}{5} + \frac{1}{5} \times \frac{1}{6} = \frac{2}{15}$$

$$P(\xi = 4) = P(A_3B_1 + A_3B_3) = P(A_3B_1) + P(A_3B_3) = \frac{1}{2} \times \frac{3}{5} + \frac{1}{3} \times \frac{1}{5} = \frac{11}{30}$$

$$P(\xi = 6) = P(A_3B_3) = \frac{1}{2} \times \frac{1}{5} = \frac{1}{10}$$

可得 随机变量 5 的分布列为:

| 5                  | 0  | 1 | 2 | 3  | 4.3 | 6  |
|--------------------|----|---|---|----|-----|----|
| $P = \frac{1}{30}$ | 1  | 1 | 1 | 2  | 11  | 1  |
|                    | 30 | 6 | 5 | 15 | 30  | 10 |

所以 数学期望 
$$E\xi = 0 \times \frac{1}{30} + 1 \times \frac{1}{6} + 2 \times \frac{1}{5} + 3 \times \frac{2}{15} + 4 \times \frac{11}{30} + 6 \times \frac{1}{10} = \frac{91}{30}$$
.

(19)

解: ( I ) 因为 
$$S_1 = a_1$$
,  $S_2 = 2a_1 + \frac{2 \times 1}{2} \times 2 = 2a_1 + 2$ ,

$$S_4 = 4a_1 + \frac{4 \times 3}{2} \times 2 = 4a_1 + 12$$
,

由題意得  $(2a_1+2)^2=a_1(4a_1+12)$ ,

解得  $a_i = 1$ ,

所以 
$$a_n = 2n - 1$$
.

( II )  $b_n = (-1)^{n-1} \frac{4n}{a_n a_{n+1}} = (-1)^{n-1} \frac{4n}{(2n-1)(2n+1)}$ 

$$= (-1)^{n-1} \left(\frac{1}{2n-1} + \frac{1}{2n+1}\right).$$
当 n 为偶数时,

当n为偶数时,

$$T_{n} = \left(1 + \frac{1}{3}\right) - \left(\frac{1}{3} + \frac{1}{5}\right) + \dots + \left(\frac{1}{2n-3} + \frac{1}{2n-1}\right) - \left(\frac{1}{2n-1} + \frac{1}{2n+1}\right)$$

$$= 1 - \frac{1}{2n+1}$$

$$= \frac{2n}{2n+1}.$$

当n为奇数时,

$$T_{n} = \left(1 + \frac{1}{3}\right) - \left(\frac{1}{3} + \frac{1}{5}\right) + \dots - \left(\frac{1}{2n-3} + \frac{1}{2n-1}\right) + \left(\frac{1}{2n-1} + \frac{1}{2n+1}\right)$$

$$= 1 + \frac{1}{2n+1}$$

$$= \frac{2n+2}{2n+1}.$$

所以 
$$T_n = \begin{cases} \frac{2n+2}{2n+1}, & n 为 奇 数, \\ \frac{2n}{2n+1}, & n 为 偶 数. \end{cases}$$



 $(\vec{x}T_n = \frac{2n+1+(-1)^{n-1}}{2n+1})$ .

解: ( I ) 函数 y = f(x) 的定义域为(0, +∞).

$$f'(x) = \frac{x^2 e^x - 2x e^x}{x^4} - k(-\frac{2}{x^2} + \frac{1}{x})$$
$$= \frac{x e^x - 2e^x}{x^3} - \frac{k(x-2)}{x^2}$$
$$= \frac{(x-2)(e^x - kx)}{x^3}.$$

由 k < 0 可得 e\*-kx>0,

所以 当 $x \in (0,2)$  时, f'(x) < 0, 函数 y = f(x) 单调递减,  $x \in (2,+\infty)$  时, f'(x) > 0, 函数 y = f(x) 单调递增

所以 f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).

(11)由(1)知,  $k \le 0$ 时,函数f(x)在(0,2)内单调递减,

故 f(x) 在(0,2) 内不存在极值点;

当k>0时、设函数 $g(x)=e^x-kx, x\in[0,+\infty)$ .

因为  $g'(x) = e^x - k = e^x - e^{\ln k}$ ,

当0<k≤1时,

当 $x \in (0,2)$ 时,  $g'(x) = e^x - k > 0$ , y = g(x)单调递增.

故 f(x) 在(0,2) 内不存在两个极值点;

当k>1时,

得  $x \in (0, \ln k)$ 时、g'(x) < 0、函数 y = g(x) 单调递减、

 $x \in (\ln k, +\infty)$  时, g'(x) > 0, 函数 y = g(x) 单调递增.

所以 函数 y = g(x) 的最小值为  $g(\ln k) = k(1 - \ln k)$ .

函数 f(x) 在(0,2) 内存在两个极值点

当且仅当 
$$g(0) > 0, g(\ln k) < 0, g(2) > 0, 0 < \ln k < 2,$$



解得  $e < k < \frac{e^2}{2}$ .

练上断述、

**函数 f(x) 在 (0,2) 内存在两个极值点时,k** 的取值范围为  $(e,\frac{e^2}{2})$ .

解:(1)由题意知  $F(\frac{p}{2},0)$ .

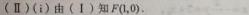
设D(t,0) (t>0),则FD的中点为 $(\frac{p+2t}{4},0)$ . 因为 |FA| = |FD|,

由拋物线的定义知  $3 + \frac{p}{2} = \left| t - \frac{p}{2} \right|$ ,

解得 t=3+p或 t=-3(含去).

由 
$$\frac{p+2t}{4}=3$$
 ,解得  $p=2$  .

所以抛物线C的方程为  $y^2 = 4x$ .



设 $A(x_0, y_0)$   $(x_0y_0 \neq 0)$ ,  $D(x_D, 0)$   $(x_D > 0)$ ,

因为 |FA| = |FD|, 则  $|x_D - 1| = x_0 + 1$ ,

由  $x_D > 0$  得  $x_D = x_0 + 2$ , 故  $D(x_0 + 2, 0)$ .

故 直线 AB 的斜率  $k_{AB} = -\frac{y_0}{2}$ .

因为 直线 I, 和直线 AB 平行,

设直线 $l_i$ 的方程为 $y = -\frac{y_0}{2}x + b$ ,

代人抛物线方程得  $y^2 + \frac{8}{y_0}y - \frac{8b}{y_0} = 0$ ,

由題意  $\Delta = \frac{64}{y_0^2} + \frac{32b}{y_0} = 0$ ,得  $b = -\frac{2}{y_0}$ 

设  $E(x_E, y_E)$ , 则  $y_E = -\frac{4}{y_0}$ ,  $x_E = \frac{4}{y_0^2}$ .

可得 直线 AE 的方程为  $y-y_0 = \frac{4y_0}{y_0^2-4}(x-x_0)$ ,

整理可得  $y = \frac{4y_0}{v_*^2 - 4}(x - 1)$ ,

直线 AE 恒过点 F(1,0).

当 $y_0^2 = 4$ 时,直线AE的方程为x = 1,过点F(1,0).

所以 直线 AE 过定点 F(1,0).



(ii)由(i)知直线AE过焦点F(1,0),

所以 
$$|AE| = |AF| + |FE| = (x_0 + 1) + (\frac{1}{x_0} + 1) = x_0 + \frac{1}{x_0} + 2$$
.

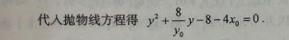
设直线 AE 的方程为 x = my + 1,

因为 点  $A(x_0, y_0)$  在直线 AE 上,

故 
$$m=\frac{x_0-1}{y_0}$$
.

直线 AB 的方程为  $y-y_0=-\frac{y_0}{2}(x-x_0)$ ,

由于
$$y_0 \neq 0$$
,  
可得  $x = -\frac{2}{y_0}y + 2 + x_0$ ,



所以 
$$y_0 + y_1 = -\frac{8}{y_0}$$
,

可求得 
$$y_1 = -y_0 - \frac{8}{y_0}$$
,  $x_1 = \frac{4}{x_0} + x_0 + 4$ .

所以 点 B 到直线 AE 的距离为

$$d = \frac{\left| \frac{4}{x_0} + x_0 + 4 + m(y_0 + \frac{8}{y_0}) - 1 \right|}{\sqrt{1 + m^2}}$$

$$= \frac{4(x_0 + 1)}{\sqrt{x_0}}$$

$$= 4(\sqrt{x_0} + \frac{1}{\sqrt{x_0}}).$$

则  $\triangle ABE$  的面积  $S = \frac{1}{2} \times 4(\sqrt{x_0} + \frac{1}{\sqrt{x_0}})(x_0 + \frac{1}{x_0} + 2) \ge 16$ ,

当且仅当 $\frac{1}{x_0} = x_0$  即 $x_0 = 1$ 时等号成立.

所以 △ABE 的面积的最小值为 16.